对于不重合的两个平面α与β,则“存在异面直线l、m,使得l∥α,l∥β,m∥α,m∥β”是“α∥β”的(  ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件

对于不重合的两个平面α与β,则“存在异面直线l、m,使得l∥α,l∥β,m∥α,m∥β”是“α∥β”的(  ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件

题目
对于不重合的两个平面α与β,则“存在异面直线l、m,使得l∥α,l∥β,m∥α,m∥β”是“α∥β”的(  )
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分又不必要条件
答案
存在异面直线l、m,使得l∥α,l∥β,m∥α,m∥β
过空间一点O,作l′∥l,m′∥m
两异面直线平移到空间一点时,两直线相交,l'与m'确定一平面γ
∵l∥α,l∥β,m∥α,m∥β
∴l'∥α,l'∥β,m'∥α,m'∥β
∴α∥γ,β∥γ
∴α∥β
反之也成立
∴“存在异面直线l、m,使得l∥α,l∥β,m∥α,m∥β”是“α∥β”的充要条件
故选C
将两异面直线平移到空间一点O,使l′∥l,m′∥m,l'与m'确定一平面γ,根据面面平行的判定定理可知α∥γ,β∥γ,从而α∥β,反之成立,最后根据“若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件”进行判定即可.

平面与平面平行的判定;必要条件、充分条件与充要条件的判断.

本题主要考查了平面与平面平行的判定,以及必要条件、充分条件与充要条件的判断,属于中档题.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.