如图,CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC.求证:CD=2CE.

如图,CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC.求证:CD=2CE.

题目
如图,CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC.求证:CD=2CE.
答案
证明:过B作BF∥AC交CE的延长线于F,
∵CE是中线,BF∥AC,
∴AE=BE,∠A=∠ABF,∠ACE=∠F,
在△ACE和△BFE中,
∠A=∠ABF
∠ACE=∠F
AE=BE

∴△ACE≌△BFE(AAS),
∴CE=EF,AC=BF,
∴CF=2CE,
又∵∠ACB=∠ABC,CB是△ADC的中线,
∴AC=AB=BD=BF,
∵∠DBC=∠A+∠ACB=∠ABF+∠ABC,
∴∠DBC=∠FBC,
在△DBC和△FBC中,
DB=FB
∠DBC=∠FBC
BC=BC

∴△DBC≌△FBC(SAS),
∴DC=CF=2CE.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.