设A为n阶方阵,且A^2-A=2I,证明:R(2I-A)+R(I+A)=n

设A为n阶方阵,且A^2-A=2I,证明:R(2I-A)+R(I+A)=n

题目
设A为n阶方阵,且A^2-A=2I,证明:R(2I-A)+R(I+A)=n
答案
由A²-A=2I
得A²-A-2I=0
(A-2I)(A+I)=0
所以R(A-2I)+R(A+I)≤n
又R(A-2I)=R(2I-A)
故 R(2I-A)+R(A+I)≤n
又R(2I-A)+R(A+I)≥R[(2I-A)+(A+I)]=R(3I)=n
所以R(2I-A)+R(I+A)=n
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.