求y=[(tanx)^2-tanx+1]/[(tanx)^2+tanx+1]最大、最小值.

求y=[(tanx)^2-tanx+1]/[(tanx)^2+tanx+1]最大、最小值.

题目
求y=[(tanx)^2-tanx+1]/[(tanx)^2+tanx+1]最大、最小值.
最大3,最小1/3)
"所以T+1/T大于等于2或小于等于-2 "怎么来的哦?
"n=(tanx)^2+1>=2 不对吧n>=1
答案
tanx 可以是任何数,这里可以用换元法,tanx = t
问题转化为求:( t^2 - t + 1 )/ ( t^2 + t + 1 ) 的极值.
设 ( t^2 - t + 1 )/ ( t^2 + t + 1 ) = k
则 t^2 - t + 1 = k * (t^2 + t + 1)
(k-1)t^2 + (k+1)t + (k-1) = 0 .(I)
k可能的取值是要求这个方程有实根.
则 (k+1)^2 - 4(k-1)^2 >= 0
3k^2 - 10k + 3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.