证明:1²+2²+3²+4²+5²+6²+.+k²=n(n+1)(2n+1)÷6

证明:1²+2²+3²+4²+5²+6²+.+k²=n(n+1)(2n+1)÷6

题目
证明:1²+2²+3²+4²+5²+6²+.+k²=n(n+1)(2n+1)÷6
答案
(n+1)^3-n^3=3n^2+3n+1,  n^3-(n-1)^3=3(n-1)^2+3(n-1)+1   .  3^3-2^3=3*(2^2)+3*2+1   2^3-1^3=3*(1^2)+3*1+1.  把这n个等式两端分别相加,得:  (n+1)^3-1=3(1^2+2^2+3^2+.+n^2)+3(1+2+3+...+n)+n,  由于1+2+3+...+n=(n+1)n/2,  代入上式得:  n^3+3n^2+3n=3(1^2+2^2+3^2+.+n^2)+3(n+1)n/2+n   整理后得:1^2+2^2+3^2+.+n^2=n(n+1)(2n+1)/6
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.