已知一元二次方程x2+px+q+1=0的一根为2. (1)求q关于p的关系式; (2)求证:抛物线y=x2+px+q与x轴有两个交点; (3)设抛物线y=x2+px+q的顶点为M,且与x轴相交于A(x
题目
已知一元二次方程x2+px+q+1=0的一根为2.
(1)求q关于p的关系式;
(2)求证:抛物线y=x2+px+q与x轴有两个交点;
(3)设抛物线y=x2+px+q的顶点为M,且与x轴相交于A(x1,0)、B(x2,0)两点,求使△AMB面积最小时的抛物线的解析式.
答案
(1)把x=2代入得22+2p+q+1=0,即q=-(2p+5);(2)证明:∵一元二次方程x2+px+q=0的判别式△=p2-4q>0,由(1)得△=p2+4(2p+5)=p2+8p+20=(p+4)2+4>0,(3分)∴一元二次方程x2+px+q=0有两个不相等的实根.(...
(1)把x=2代入可求得q与p的关系式;
(2)由△=b2-4ac可判断抛物线与x轴的交点情况;
(3)先写出该抛物线的顶点坐标,方程根与系数关系可求线段AB的长,进而求得△AMB的面积表达,从而求得最小值.
抛物线与x轴的交点.
考查了代入法、判别式△的使用,以及一元二次方程中根与系数的关系、三角形面积的求法、最大最小值的求解等内容.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点