如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的面积为(  ) A.813 B.8132 C.8134 D.8138

如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的面积为(  ) A.813 B.8132 C.8134 D.8138

题目
如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的面积为(  )
A. 81
3

B.
81
3
2

C.
81
3
4

D.
81
3
8
答案
∵△ABC是等边三角形,
∴∠B=∠C=60°,AB=BC;
∴CD=BC-BD=AB-3;
∵∠ADE=∠B=60°,
又∠ADC=∠B+∠BAD,即60°+∠CDE=60°+∠BAD,
∴∠CDE=∠BAD,
又∵∠B=∠C=60°,
∴△ABD∽△DCE;
AB
CD
BD
CE
,即
AB
AB−3
3
2

解得,AB=9;
∴S△ABC=
1
2
AB•BC•sin60°=
81
3
4

故选C.
由∠ADE=60°,可证得△ABD∽△DCE;可用等边三角形的边长表示出DC的长,进而根据相似三角形的对应边成比例,求得△ABC的边长,然后由三角形的面积公式S=
1
2
absinC求解.

相似三角形的判定与性质;等边三角形的性质.

此题主要考查了等边三角形的性质和相似三角形的判定和性质,能够证得△ABD∽△DCE是解答此题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.