设m*n矩阵A的秩R(A)=n-1,且K1,K2 是齐次方程AX=0的两个不同的解,则AX=O的通解为多少?
题目
设m*n矩阵A的秩R(A)=n-1,且K1,K2 是齐次方程AX=0的两个不同的解,则AX=O的通解为多少?
我觉得c(K1+k2)和c(K1-K2)都是通解,因为线性无关解向量只有一个,就是K2,然后另外一个就是零向量,但是答案是c(K1-K2),c为任意常数..
答案
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点