设n阶方阵A满足A⌃2 = A,证明:A或者是单位矩阵,或者是不可逆矩阵

设n阶方阵A满足A⌃2 = A,证明:A或者是单位矩阵,或者是不可逆矩阵

题目
设n阶方阵A满足A⌃2 = A,证明:A或者是单位矩阵,或者是不可逆矩阵
利用反证法:如果A是可逆矩阵,证明A必是单位矩阵 (这句话不是很理解,求教)
答案
要这样来理解
把矩阵分为两类讨论,第一类是单位阵(这类显然),第二类不是单位阵(这类的目标是证明不可逆),在第二类中使用反证法.
反证法的讲法存在一步逻辑跳跃,不过这步太显然了,不算是什么问题.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.