如图,在直角梯形ABCD中,AB∥DC,∠B=90°.E是BC上的一点,连结AE、DE,且△ADE≌△ECD. (1)求证:△AED是等腰直角三角形; (2)若△AED的面积是25/2,直角梯形ABC

如图,在直角梯形ABCD中,AB∥DC,∠B=90°.E是BC上的一点,连结AE、DE,且△ADE≌△ECD. (1)求证:△AED是等腰直角三角形; (2)若△AED的面积是25/2,直角梯形ABC

题目
如图,在直角梯形ABCD中,AB∥DC,∠B=90°.E是BC上的一点,连结AE、DE,且△ADE≌△ECD.

(1)求证:△AED是等腰直角三角形;
(2)若△AED的面积是
25
2
答案
(1)证明:∵△ABE≌△ECD,
∴AE=DE,
∴∠BAE=∠DEC,∠AEB=∠EDC,
∵∠AEB+∠BAE=90°,
∴∠AEB+∠DEC=90°,
∴∠AED=90°,
∴△AED是等腰直角三角形;
(2)∵△AED是等腰直角三角形,
∴S△AED=
1
2
AE2
25
2
=
1
2
AE2
∴AE=5,
∵△ABE≌△ECD,△AED的面积是
25
2
,直角梯形ABCD的面积是
49
2

∴2S△ABE=SABCD-S△AED
∴S△ABE=
49
2
25
2
2
=6,
1
2
AB•BE=6,
则2AB•BE=24,
∵(AB+BE)2=AB2+2AB•BE+BE2=AB2+BE2+2AB•BE=AE2+24=25+24=49,
∴AB+BE=7,
∴△ABE的周长是=7+5=12.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.