设函数f(x)二阶可导 有f'(x)>0,f(0)=0证明F(x)=f(x)/x,x≠0,F(x)=f(0),x=0是单调增函数

设函数f(x)二阶可导 有f'(x)>0,f(0)=0证明F(x)=f(x)/x,x≠0,F(x)=f(0),x=0是单调增函数

题目
设函数f(x)二阶可导 有f''(x)>0,f(0)=0证明F(x)=f(x)/x,x≠0,F(x)=f(0),x=0是单调增函数
答案
只要证明:F ‘(x)=(xf '(x) -f(x))/x² >0 即xf '(x) -f(x)>0 (①)
1、.当x>0,由拉格朗日中值定理得,f '(ξ1)=[f(x)-f(0)] / (x-0) ,其中0
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.