过原点的动椭圆的一个焦点为F(1,0),长轴长为4,则动椭圆中心的轨迹方程为 _ .
题目
过原点的动椭圆的一个焦点为F(1,0),长轴长为4,则动椭圆中心的轨迹方程为 ___ .
答案
∵长轴长为4
∴2a=4,
设椭圆中心P(x,y),另外一个焦点的坐标就是F'(2x-1,2y)
据椭圆的定义:
+=2a=4
整理得:
(2x-1)
2+4y
2=9
即:(x-
)
2+y
2=
故答案为 (x-
)
2+y
2=
设中心坐标P(x,y),据已知的一个焦点和P可以推出另外一个焦点,再根据椭圆性质列方程:O到F,F'的距离之和=2a通过化简即可求出结果.
轨迹方程.
本题考查椭圆轨迹方程问题,通过已知椭圆的性质和公式,设出中心坐标然后利用已知等式化简求结果.本题属于难题.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点