设A是n阶方阵,A*是A的伴随矩阵,∣A∣=2则方阵B=AA*的特征值是( )特征向量是( )

设A是n阶方阵,A*是A的伴随矩阵,∣A∣=2则方阵B=AA*的特征值是( )特征向量是( )

题目
设A是n阶方阵,A*是A的伴随矩阵,∣A∣=2则方阵B=AA*的特征值是( )特征向量是( )
答案
B=AA*=|A|E=
2
..2
.2
.
.
.2
n阶
所以特征值为2(n重)
特征向量为α1=(0,0,0.0,0,1)^T,α2=(0,0,0...0,1,0)^T,α3=(0,0,0.1,0,0)^T.αn=(1,0,0.0,0,0)^T
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.