已知a,b是2个相互垂直的单位向量.若向量c满足(a-c)*(b-c)=0 .求向量/c/ 的最大值.
由题意得:a·b=0
(a-c)(b-c)=0
a·b-a·c-b·c+c^2=0
c^2-ac-bc=0
|c|^2-|a||c|cosA-|b||c|cos(∏/2-A)=0
|c|^2-|a||c|cosA-|b||c|sinA=0
|c|(|c|-|a|cosA-|b|sinA)=0
|c|=0(舍),|c|=|a|cosA+|b|sinA=cosA+sinA
因为0
根据sin和cos的图像,得知:
A最大为∏/4,所以|c|=2^(1/2)