高中三角函数的推导

高中三角函数的推导

题目
高中三角函数的推导
正弦、余弦、正切 函数的半角、万能、二倍角以及它们的两角和与差公式,注:由cos(a+b)=cosa*cosb-sina*sinb推导的这些公式,如果 感觉良好追加分数!
好急的,是
答案
cos2a=cos(a+a)=cosa*cosa-sina*sina=(cosa)^2-(sina)^2=[1-(sina)^2]-(sina)^2=1-2(sina)^2
=(cosa)^2-[1-(cosa)^2]=2(cosa)^2-1
cos(a-b)=cos[a+(-b)]=cosa*cos(-b)-sina*sin(-b)=cosa*cosb+sina*sinb
sin(a-b)=-cos[π/2+(a-b)]=-cos[(π/2-b)+a]=-[cos(π/2-b)*cosa-sin(π/2-b)*sina]
=-(sinb*cosa-cosb*sina)=sina*cosb-sinb*cosa
sin(a+b)=-cos[π/2+(a+b)]=-cos[(π/2+a)+b]=-[cos(π/2+a)*cosb-sin(π/2+a)*sinb]
=-(-sina*cosb-cosa*sinb)=sina*cosb+cosa*sinb
sin2a=-cos(π/2+(a+a)) =-cos[(π/2+a)+a]=-[cos(π/2+a)*cosa-sin(π/2+a)*sina]
=-(-sina*cosa-cosa*sina)=2sina*cosa
太多了- -耐心用完.你将就着用吧.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.