证明4ax^3+3bx^2+2cx=a+b+c,在(0,1)内至少有一个根

证明4ax^3+3bx^2+2cx=a+b+c,在(0,1)内至少有一个根

题目
证明4ax^3+3bx^2+2cx=a+b+c,在(0,1)内至少有一个根
答案
证明:
记g(x)=ax^4+bx^3+cx^2-(a+b+c)x,
有g'(x)=f(x)=4ax^3+3bx^2+2cx-(a+b+c).且g(1)=g(0)=0,
显然g(x)在[0,1]上满足洛尔定理条件
知至少存一点x0∈(0,1)使得g'(x0)=f(x0)=0
整理即得证.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.