数列极限问题两个:
题目
数列极限问题两个:
1.已知LimAn=a,求证:LimAn+p=a,其中p是固定自然数.
n→∞ n→∞
2.求证;数列{Bn}的极限是b的充分必要条件是:它的子数列{B2n}和{b2n-1}都存在极限,且极限相等.
答案
1、证明:因为limAn=a,所以任给t>0,存在正整数N,当n>N时总有│An-a│K=N-p时即n+p>N时总有│An+p -a│0,存在正整数N1,当n>N1时总有│B2n-b│0,存在N2,当n>N2时总有│B2n-1 -b│N时上面两个不等式都成立,即│Bn-b│0,...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点