用数学归纳法证明:1-3+5-7+...(-1)^n-1(2n-1)=(-1)^(n-1)*n时,第二步从设n=k成立到证明n=k+1成立
题目
用数学归纳法证明:1-3+5-7+...(-1)^n-1(2n-1)=(-1)^(n-1)*n时,第二步从设n=k成立到证明n=k+1成立
要证明的式子是
答案
解假设n=k命题成立
即1-3+5-7+...(-1)^(k-1)(2k-1)=(-1)^(k-1)*k
那么当n=k+1时,
1-3+5-7+...(-1)^(k-1)(2k-1)+(-1)^(k)(2(k+1)-1)
=1-3+5-7+...(-1)^(k-1)(2k-1)+(-1)^(k)(2k+1)
=(-1)^(k-1)*k+(-1)^(k)(2k+1)
=(-1)^(k-1)*k+(-1)^(k-1)*(-1)^(1)(2k+1)
=(-1)^(k-1)*k+(-1)^(k-1)*(-2k-1)
=(-1)^(k-1)[k+(-2k-1)]
=(-1)^(k-1)[-k-1]
=(-1)^(k-1)(-1)^(1)[k+1]
=(-1)^(k)(k+1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点