若n-m表示[m,n](m<n)的区间长度,函数f(x)=√a-x+√x(a>0)的值域区间长度为2(√2-1),a=?
题目
若n-m表示[m,n](m<n)的区间长度,函数f(x)=√a-x+√x(a>0)的值域区间长度为2(√2-1),a=?
思路我都会,就是不知道具体表示
答案
是f(x)= √(a-x)+√x吧!
提示:易知f(x)的定义域为[0,a].
令y=f(x),则y>0,且y²=[√(a-x)+√x]²=a+2√[x(a-x)]=a+2√[-(x-a/2)²+a²/4],
当x=a/2时,y²取最大值2a,当x=0或a时,y²取最小值a,
从而f(x)的值域为[√a,√(2a)],区间长度为(√2-1)√a=2(√2-1),
所以√a=2,故a=4.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点