已知正方体ABCD-A′B′C′D′,求证DB′⊥平面ACD′.
题目
已知正方体ABCD-A′B′C′D′,求证DB′⊥平面ACD′.
请尽快给出答案,
答案
这个是比较清楚的了,我不知道你们学到哪里了,你可以根据你学的进度删减我的过程哦.
连接AC
因为是正方体
所以B'B⊥AB,B'B⊥BC,又因为AB、BC交于B,
所以B'B⊥平面ABCD,又因为AC属于平面ABCD,
所以BB'⊥AC,
因为是正方体,所以AC⊥BD,又因为BD、BB'叫于B,
所以AC⊥平面BB'D,
所以AC⊥BD'
连接A'D,
A'B'⊥平面A'D'DA
所以D'A⊥A'B',又因为AD'⊥A'D
且A'D、A'B'交于A',
所以AD'⊥平面A'DB'
所以AD'⊥DB',
又因为AD'、AC交于A
所以DB′⊥平面ACD′
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点