矩阵a与矩阵b相似,且a可逆,证明矩阵b可逆以及a^-1与b^-1相似

矩阵a与矩阵b相似,且a可逆,证明矩阵b可逆以及a^-1与b^-1相似

题目
矩阵a与矩阵b相似,且a可逆,证明矩阵b可逆以及a^-1与b^-1相似
答案
因为A,B相似
所以存在可逆矩阵P使得 P^-1AP=B
由于A可逆,故B可逆 (同阶可逆矩阵的乘积仍为可逆矩阵)
且 B^-1 = (P^-1AP)^-1 = P^-1A^-1(P^-1)^-1 = P^-1A^-1P
故 A^-1与B^-1相似.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.