设arcsinx+arctan1/2=π/4,求x

设arcsinx+arctan1/2=π/4,求x

题目
设arcsinx+arctan1/2=π/4,求x
答案
设:w=arcsinx,则:sinw=x,
又:rarctan(1/2)=a,则:tana=1/2,则sina=1/√5,cosa=2/√5
arcsinx=π/4-arctan(1/2)
arcsinx=π/4-arcsin(√1/√5)
两边取正弦,得:
sin(arcsinx)=sin(π/4-a)=sin(π/4)cosa-cos(π/4)sina
x=1/√10
x=(√10)/(10)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.