设函数f(x)满足条件f(x+y)=f(x)+f(y),且f(x)在x=0处连续,证明f(x)在所有的点x0处连续

设函数f(x)满足条件f(x+y)=f(x)+f(y),且f(x)在x=0处连续,证明f(x)在所有的点x0处连续

题目
设函数f(x)满足条件f(x+y)=f(x)+f(y),且f(x)在x=0处连续,证明f(x)在所有的点x0处连续
答案
证明f(x)在R上连续,即要证明对于任意x0,
极限lim[f(x0+Δx)(Δx→0)存在且等于f(x0).
因为f(x)在x=0处连续,所以limf(x)(x→0)=f(0)
又因为f(x+y)=f(x)+f(y),f(0)=f(0)+f(0)=2f(0),所以f(0)=0
所以f(x0+Δx)=f(x0)+f(Δx)
所以lim[f(x0+Δx)(Δx→0)=limf(Δx)+f(0)(Δx→0)=f(x0)
即证明了函数在任意一点x处存在极限且等于f(x0)
结论得证
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.