不定积分∫√(1+X^2)dX的解过程

不定积分∫√(1+X^2)dX的解过程

题目
不定积分∫√(1+X^2)dX的解过程
答案
需借助三角函数换元.
x = tany、dx = sec^2y dy
∫ √(1 + x^2) dx
= ∫ √(1 + tan^2y) * sec^2y dy
= ∫ sec^3y dy
= ∫ secy d(tany)
= secytany - ∫ tany d(secy)
= secytany - ∫ tany * (secytany dy)
= secytany - ∫ (sec^2y - 1) * secy dy
= secytany - ∫ sec^3y dy + ∫ secy dy
2∫ sec^3y dy = secytany + ∫ secy dy
∫ sec^3y dy = (1/2)secytany + (1/2)ln|secy + tany| + C
= (x/2)√(1 + x^2) + (1/2)ln|x + √(1 + x^2)| + C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.