设f(x)连续,且满足f(x)=e^x+∫x上0下(t-x)f(t)dt 求f(x)
题目
设f(x)连续,且满足f(x)=e^x+∫x上0下(t-x)f(t)dt 求f(x)
答案
∵f(x)=e^x+∫(t-x)f(t)dt
∴f'(x)=e^x-∫f(t)dt
f''(x)=e^x-f(x)
f(0)=f'(0)=1
故 解此微分方程得 f(x)=C1e^x+C2e^(-x)+(x/2)e^x (C1,C2是积分常数).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点