函数连续性定义中为什么不是去心邻域
题目
函数连续性定义中为什么不是去心邻域
定义 设函数y=f(x)在点x0的某一邻域内有定义,如果limΔx→0Δy=limΔx→0[f(x0+Δx)-f(x0)]=0,那么就称函数y=f(x)在点x0连续
这里有点搞不懂的为什么不是在点x0的某一去心邻域内有定义,以前的一些极限的定义不是一再强调去心邻域吗?
还有即然不是去心邻域,那么就是说x就有可能取x0,这时Δx=0,但定义中limΔx→0是不是不对了呀,因为Δx→0是指无限接近于0,却不等于0.但实际上,Δx可以完全是0,这是不是不对了呀
答案
连续性中讨论的是邻域没错,这是为了保证连续性的定义中f(x0)有意义,和函数极限的定义没有什么关系,在连续性的定义中极限limΔx的意义没有变化,Δx仍然是不等于0的.从连续性的另一等价定义可以更清晰地反映这一点,f(x...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点