已知集合A={y,y=x^2-2x+3,x∈R},B={x,x>a},试证明:“a>2”是“B真包含于A”的一个充分非必要条件
题目
已知集合A={y,y=x^2-2x+3,x∈R},B={x,x>a},试证明:“a>2”是“B真包含于A”的一个充分非必要条件
答案
x∈R ,y=x^2-2x+3=(x-1)^2+2≥2
∴A=[2,+∞)
B={x,x>a}=(a,+∞)
证明:
若 a>2时,B=(a,+∞)
任取x∈B,在x>a,
∵a>2∴x>2 ∴x∈A
根据子集的定义
∴B是A的子集
∵2∈A,2不属于B
∴B是A的真子集
∴B真包含于A
若“B真包含于A”成立
即B是A的真子集
则需a>2,或a=2
(∵a=2时,B=(2,+∞),符合题意)
不一定有a>2
∴:“a>2”是“B真包含于A”的一个充分非必要条件
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点