已知数列{an}的通项公式an=n2+λn+2,若数列{an}为单调递增数列,则实数λ的取值范围是_.

已知数列{an}的通项公式an=n2+λn+2,若数列{an}为单调递增数列,则实数λ的取值范围是_.

题目
已知数列{an}的通项公式a
答案
解方法一:
∵an=n2+λn+2,
∴an+1=(n+1)2+λ(n+1)+2,
∵数列{an}为单调递增数列,
∴an+1-an=2n+λ+1>0(n∈N*)恒成立,
∴λ>-2n-1(n∈N*)恒成立,
令f(n)=-2n-1(n∈N*),
则λ>f(x)max=-2×1-1=-3
∴λ>-3.
∴实数λ的取值范围是(-3,+∞).
方法二:
∵an=n2+λn+2,
故an是n的二次函数,
又数列{an}为单调递增数列,
∴对称轴n=-
λ
2
1+2
2
=
3
2
,如图:
∴λ>-3.
故答案为:(-3,+∞).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.