已知函数f(x)=lnx+a/x,(a∈R),当a=1,且x≥1时,证明:f(x)≤1

已知函数f(x)=lnx+a/x,(a∈R),当a=1,且x≥1时,证明:f(x)≤1

题目
已知函数f(x)=lnx+a/x,(a∈R),当a=1,且x≥1时,证明:f(x)≤1
答案
函数f(x)应是如右形式:f(x)=(lnx+a)/x,否则函数的值域为无穷大;
f'(x)=(lnx+a)/x=[(1/x)*x-(lnx+a)]/x²=-(lnx)/x;{a=1};
当x≧1时,f'(x)≦0,f(x)是单调递减函数,其最大值是在区间左端x=1处f(x)=(ln1+1)/1=1;
所以 f(x)≤1;
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.