设F 1、F2 分别为双曲线(焦点在x轴上的那种)的左、右焦点.若在双曲线右支上存在点P ,满足PF2=F1F2,且F2 到直线PF1 的距离等于双曲线的实轴长,则该双曲线的渐近线方程为
题目
设F 1、F2 分别为双曲线(焦点在x轴上的那种)的左、右焦点.若在双曲线右支上存在点P ,满足PF2=F1F2,且F2 到直线PF1 的距离等于双曲线的实轴长,则该双曲线的渐近线方程为
(A)4x±3y=0 (B)3x±4y=0
答案
作:F2E⊥PF1因为,F2到直线PF1的距离等于实长轴所以,F2E=2a,因为|PF2|=|F1F2|=2c在等腰三角形F1F2P中,因为,F2E⊥PF1所以,PE=EF1=PF1/2在Rt△F1EF2中,EF1=根号下[(F1F2)²-(F2E)²]=根号下[(2c)²-(2a)&s...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点