设动点P到A(-1,0),B(1,0)的距离分别是d1,d2,角APB=2a,切存在常数b (0

设动点P到A(-1,0),B(1,0)的距离分别是d1,d2,角APB=2a,切存在常数b (0

题目
设动点P到A(-1,0),B(1,0)的距离分别是d1,d2,角APB=2a,切存在常数b (0
答案
A,B为定点,用余弦定理:
AB^2=d1^2+d2^2-2d1d2cos2θ
=d1^2+d2^2-2d1d2(1-2sin^2θ)
=d1^2+d2^2-2d1d2+4d1d2sin^2θ
=(d1-d2)^2+4λ
|d1-d2|=√(AB^2-4λ)
A,B为定点,AB=定值,λ为常数,所以|d1-d2|=定值
即:到定点A,B的距离差为定值.
所以,P轨迹为双曲线.
根据双曲线定义:AB=2c ,2a=|d1-d2|=√(AB^2-4λ)
a==1/2*√(AB^2-4λ)=1/2*√(4c^2-4λ)
a^2=c^2-λ
b^2=c^2-a^2=c^2-(c^2-λ)=λ
所以轨迹方程为:
x^2/(c^2-λ)-y^2/λ=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.