如图所示,O是△ABC所在平面内一动点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接,如果DEFG能构成四边形. (1)当O在△ABC内时,求证:四边形DEFG是平行四边形;

如图所示,O是△ABC所在平面内一动点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接,如果DEFG能构成四边形. (1)当O在△ABC内时,求证:四边形DEFG是平行四边形;

题目
如图所示,O是△ABC所在平面内一动点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接,如果DEFG能构成四边形.

(1)当O在△ABC内时,求证:四边形DEFG是平行四边形;
(2)当O点移到△ABC外时,(1)的结论是否成立?画出图形并说明理由.
答案
(1)证明:∵AD=DB,AG=GC,
∴DG平行且等于
1
2
BC.
同理:EF平行且等于
1
2
BC,
∴DG平行且等于EF,
∴四边形DEFG是平行四边形;

(2)平行四边形或在同一直线上.
理由如下:
如图:∵AD=DB,AG=GC,
∴DG平行且等于
1
2
BC.
同理EF平行且等于
1
2
BC,
∴DG平行且等于EF,
∴四边形DEFG是平行四边形.
∵当直线AO平行于BC的时候,点D、F、G(E)在同一直线上,点G和点E重合,或者点F和点D重合.
∴答案应该是不一定是平行四边形.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.