求∫x/(1+x^2) dx 上限1 下限0

求∫x/(1+x^2) dx 上限1 下限0

题目
求∫x/(1+x^2) dx 上限1 下限0
那如果是∫x^2/(1+x^2) dx 上限1 下限0,又怎样计算?
等于(1/4)*ln2?
答案
原式等于=∫1/(1+x^2) *1/2d(x^2 +1)
=1/2 *ln|1+x^2|
再带入积分上下限即可.
典型的凑配法.
那么就是这样子:
∫x^2/(1+x^2) dx
=∫(x^1+1-1)/(1+x^2)dx
=∫[1 - 1/(1+x^2)]dx
下面会了吧?
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.