在三角形ABC中角ACB为90度D是BC延长线E事AB上一点且在BD的垂直平分线上DE交AC于F,求证E在AF的垂直平分线
题目
在三角形ABC中角ACB为90度D是BC延长线E事AB上一点且在BD的垂直平分线上DE交AC于F,求证E在AF的垂直平分线
答案
分析:在三角形ABC中过点E作EG垂直AB,BD的垂直平分线交BD于H.
求证E在AF的垂直平分线等价于求证EG垂直平分AF即EG平分AF
证明三角形AEG全等于三角形FEG即可.(AAS)
(角A=角EFG,直角相等,共边EG相等)
要证明三角形AEG全等于三角形FEG证明角A=角EFG即可.
证明:
由角ACB为90度即AC垂直BD与BD的垂直平分线BH垂直BD(共线上的垂线平行)得
角A=角BEH,角EFG=角DEH
由BD的垂直平分线BH平分角BDE得角BEH=角DEH =角EFG
又因为角A=角BEH(已证),所以角A=角EFG
再证明三角形AEG全等于三角形FEG即可得AH=FH即EG平分AF
又因为EG垂直AB
所以EG垂直平分AF即E在AF的垂直平分线
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点