1/(sinx)^2 - 1/x^2在趋于0时为1/3,我用罗必塔法则算出怎么是0啊?

1/(sinx)^2 - 1/x^2在趋于0时为1/3,我用罗必塔法则算出怎么是0啊?

题目
1/(sinx)^2 - 1/x^2在趋于0时为1/3,我用罗必塔法则算出怎么是0啊?
答案
不能确定你的问题出在哪里,需要帮忙检查的话请追问附上过程.
以下是用洛必达的做法:
lim{x → 0} 1/(sin²(x))-1/x²
= lim{x → 0} (x²-sin²(x))/(x²sin²(x))
= (lim{x → 0} (x²-sin²(x))/x⁴)/(lim{x → 0} sin(x)/x)²
= lim{x → 0} (x²-sin²(x))/x⁴ (重要极限lim{x → 0} sin(x)/x = 1)
= lim{x → 0} (2x-2sin(x)cos(x))/(4x³) (0/0型,洛必达)
= lim{x → 0} (2-2cos²(x)+2sin²(x))/(12x²) (0/0型,洛必达)
= lim{x → 0} sin²(x)/(3x²)
= (lim{x → 0} sin(x)/x)²/3
= 1/3 (重要极限lim{x → 0} sin(x)/x = 1).
用Taylor展开也可以:
∵cos(t) = 1-t²/2+t⁴/24+o(t⁴),
∴sin²(x) = (1-cos(2x))/2 = (2x)²/4-(2x)⁴/48+o(x⁴) = x²-x⁴/3+o(x⁴),
∴x²-sin²(x) = x⁴/3+o(x⁴),即(x²-sin²(x))/x⁴ = 1/3+o(1) → 1/3.
再由上面已证lim{x → 0} 1/(sin²(x))-1/x² = lim{x → 0} (x²-sin²(x))/x⁴ = 1/3.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.