当x>0时,证明不等式cos x>1-(1/2)x^2
题目
当x>0时,证明不等式cos x>1-(1/2)x^2
答案
cosx=1-2sin²(x/2)
因为sina<a,所以sin(x/2)<(x/2),所以sin²(x/2)<(x/2)²
于是1-2sin²(x/2)>1-2(x/2)²=1-(1/2)x²
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点