已知关于x的不等式[(k2+6k+14)x-9][(k2+28)x-2k2-12k]<0的解集M与整数集Z满足M∩Z={1},求常数k的取值范围.

已知关于x的不等式[(k2+6k+14)x-9][(k2+28)x-2k2-12k]<0的解集M与整数集Z满足M∩Z={1},求常数k的取值范围.

题目
已知关于x的不等式[(k2+6k+14)x-9][(k2+28)x-2k2-12k]<0的解集M与整数集Z满足M∩Z={1},求常数k的取值范围.
答案
把x=1代入不等式[(k2+6k+14)x-9][(k2+28)x-2k2-12k]<0,
可得(k2+6k+5)(-k2-12k+28)<0,
即(k+1)(k+5)(k+14)(k-2)>0,
用穿根法解得 k∈(-∞,-14)∪(-5,-1)∪(2,+∞).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.