过原点作抛物线y=x∧2+4的切线,切线与抛物线y=x∧2+4围成的平面图形D,求D绕x轴旋转所得旋转体的体积

过原点作抛物线y=x∧2+4的切线,切线与抛物线y=x∧2+4围成的平面图形D,求D绕x轴旋转所得旋转体的体积

题目
过原点作抛物线y=x∧2+4的切线,切线与抛物线y=x∧2+4围成的平面图形D,求D绕x轴旋转所得旋转体的体积
答案
旋转体是一个圆柱体
求出两个交点的坐标,得先求出切线方程,用直线的点斜式,设斜率为k,然后用直线与抛物线联立方程组,消去x或y,得到一个一元二次方程,其判别式等于0,求出k的值等于正负4.接着算出两交点坐标为(2,8),(-2,8),两点之间的距离为4,离x轴的距离为8
圆柱体的体积V= =πR^2*h,其中R=8,h=4,最后算得V=256 π
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.