设W1,W2是数域F上向量空间V的两个字空间,a,b是V的两个向量,其中a属于W2,但a不属于W1,又b不属于W2,
题目
设W1,W2是数域F上向量空间V的两个字空间,a,b是V的两个向量,其中a属于W2,但a不属于W1,又b不属于W2,
证明:(1)对于任意k属于F,b+ka不属于W2
(2)至多有一个k属于F,使得b+ka属于W1.
答案
(1)若b+ka属于W2
因为a属于W2,故b=(b+ka)-ka属于W2,矛盾.
(2)有k1,、k2属于F,k1不等于k2,使得b+k1a和b+k2a属于W1.
那么(k1-k2)a=(b+k1a)-(b+k2a)属于W1
故a属于W1,矛盾.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点