设A,B是任意两个事件,A发生的概率既不为0也不为1,那么若A,B满足关系P(B|A)=P(B|A*-1)

设A,B是任意两个事件,A发生的概率既不为0也不为1,那么若A,B满足关系P(B|A)=P(B|A*-1)

题目
设A,B是任意两个事件,A发生的概率既不为0也不为1,那么若A,B满足关系P(B|A)=P(B|A*-1)
怎么由以上关系式推导出A,B互相独立.
答案
由P(B|A)=P(B|A*-1)得
P(AB)/P(A)=P(BA*-1)/P(A*-1),注意到
P(BA*-1)=P(B-A)=P(B-AB)=P(B)-P(AB),P(A*-1)=1-P(A),代入上式化简即得
P(AB)=P(A)P(B),所以A,B互相独立.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.