如图,在内切的两圆中,设C为小圆的圆心,O为大圆的圆心,P为切点,⊙O的弦PQ和⊙C相交于R,过点R作⊙C的切线与⊙O交于A、B两点,求证:Q是弧AB的中点.
题目
如图,在内切的两圆中,设C为小圆的圆心,O为大圆的圆心,P为切点,⊙O的弦PQ和⊙C相交于R,过点R作⊙C的切线与⊙O交于A、B两点,求证:Q是弧AB的中点.
答案
证明:连接OC并延长,则延长线必经过切点P,连接CR;
∵CP=CR,
∴∠P=∠CRP.
∵OP=OQ,
∴∠P=∠Q.
∴∠CRP=∠Q.
∴CR∥OQ.
∵AB与⊙O相切于点R,
∴CR⊥AB.
∴OQ⊥AB.
∴Q是弧AB的中点.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点