过点M(2、1)作直线L,分别交于x轴、y轴的正半轴于点A、B.当MA*MB为最小值时,求直线L的方程.

过点M(2、1)作直线L,分别交于x轴、y轴的正半轴于点A、B.当MA*MB为最小值时,求直线L的方程.

题目
过点M(2、1)作直线L,分别交于x轴、y轴的正半轴于点A、B.当MA*MB为最小值时,求直线L的方程.
答案
首先我们设这个直线的方程是y=kx+b,而且要注意一点这里的K一定是负值
因M点是其中一点
那么b=1-2k
与x轴的交点坐标是(1-2k,0)
与y轴的交点坐标是(0,2k-1/k)
那么MA和MB的长度在直角三角形当中可以求出
MA的平方=4k^2+4
MB的平方=1+1/k^2
所以MA*MB=-2*(k^2+1)/k=(2k+2)/(-k)=-2(k+1/k)(为什么这里多出一个- 是因为K是负数开方出来取其相反数)
那么MAMB的最小值,也就是说当k为什么数的时候-(k+1/k)最小,也就是说k+1/k最大
不难知道K+1/K是小于等于-2的
K=-1
那么这个直线的方程是y=-x+3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.