设f(x)在[0,2a]上连续,且f(0)=f(2a),证明:存在&属于[0,a],使得f(&)=f(&+a)

设f(x)在[0,2a]上连续,且f(0)=f(2a),证明:存在&属于[0,a],使得f(&)=f(&+a)

题目
设f(x)在[0,2a]上连续,且f(0)=f(2a),证明:存在&属于[0,a],使得f(&)=f(&+a)
答案
令F(x)=f(x)-f(x+a),
因为f(x)在[0,2a]上连续,所以
F(x)在[0,2a]上连续,

F(0)=f(0)-f(a)
F(a)=f(a)-f(2a)=f(a)-f(0) (因为f(0)=f(2a))
所以
F(0)F(a)=-[f(0)-f(a)]^2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.