数列不等式

数列不等式

题目
数列不等式
已知an=2^n-1 前一个n为下标
求证:a1/a2+a2/a3+a3/a4+.+an/a(n+1) 最后一个n+1为下标
> n/2-1/3
答案
用放缩法
由于an/a(n+1)=(2^n-1)/[2^(n+1)-1]=1/2-1/[2*[2^(n+1)-1]]
a1/a2+a2/a3+a3/a4+.+an/a(n+1)=n/2-[1/3+1/7+…+1/[2^(n+1)-1]]/2
欲证a1/a2+a2/a3+a3/a4+.+an/a(n+1) > n/2-1/3
只需n/2-[1/3+1/7+…+1/[2^(n+1)-1]]/2> n/2-1/3
即1/3+1/7+…+1/[2^(n+1)-1]
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.