证:当rank(A)=n-1时,rank(A*)=1.

证:当rank(A)=n-1时,rank(A*)=1.

题目
证:当rank(A)=n-1时,rank(A*)=1.
答案
rank(A)=n-1,所以至少存在一个n-1阶子式不为0,所以A*中至少一个元素值不为0,所以rank(A*)≥1.
又AA*=|A|*I=0(其中I为单位阵,|A|*I中的*为乘号,因为A的行列式为0,所以结果为0矩阵),利用公式:
Rank(AB)≥Rank(A)+Rank(B)-n,所以
Rank(AA*)=0≥Rank(A)+Rank(A*)-n
Rank(A)=n-1,所以Rank(A*)≤1.
所以rank(A*)=1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.