如图,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是(  ) A.15 B.15+52 C.20 D.15+55

如图,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是(  ) A.15 B.15+52 C.20 D.15+55

题目
如图,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是(  )
A. 15
B. 15+5
2

C. 20
D. 15+5
5
答案
连结AD,BP,PA,
∵弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,
∴∠ABD=90°,
∴AD=
2
AB,
∵△ABC为等边三角形,
∴AC=BC=AB=5,
∴BD=BP=5,
当点P与点D重合时,四边形ACBP周长的最大值,最大值为AC+BC+BD+AD=5+5+5+5
2
=15+5
2

故选B.
连结ADBP,PA,由于弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,可得到△ABD为等腰直角三角形,则AD=
2
BD,由于△ABC为等边三角形,所以AC=BC=AB=5,BD=BP=5,当点P与点D重合时,AP最大,四边形ACBP周长的最大值,最大值为AC+BC+BD+AD=15+5
2

圆的认识;等边三角形的性质;等腰直角三角形.

本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等边三角形的性质和等腰直角三角形的性质.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.