在△ABC中,∠ACB=90°,CM⊥AB于M,AT是∠BAC的平分线,交CM于D,过点D作DE∥AB,交BC于E.求证:CT∥BE
题目
在△ABC中,∠ACB=90°,CM⊥AB于M,AT是∠BAC的平分线,交CM于D,过点D作DE∥AB,交BC于E.求证:CT∥BE
是求证CT=BE,
答案
证明:过点D作DP⊥AC于P,过点E作EQ⊥AB于Q
∵∠ACB=90
∴∠BAC+∠ACB=90
∵CM⊥AB
∴∠BAC+∠ACD=90
∴∠ACD=∠ABC
∵AT平分∠BAC
∴∠BAT=∠CAT
∵∠CDT=∠CAT+∠ACD,∠CTD=∠BAT+∠ABC
∴∠CDT=∠CTD
∴CD=CT
∵AT平分∠BAC,DP⊥AC,CM⊥AB
∴DP=DM
∵EQ⊥AB,DE∥AB
∴矩形DMQE,∠BQE=∠CPD=90
∴EQ=DM
∴EQ=DP
∴△CPD≌△BQE (AAS)
∴CD=BE
∴CT=BE
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点