过点p(4,0)作动直线l交抛物线y^2=4x于A,B两点,O为原点.
题目
过点p(4,0)作动直线l交抛物线y^2=4x于A,B两点,O为原点.
判断OA*OB(向量)是否为定值?求AB中点M的轨迹方程.
答案
设直线方程为y=k(x-4),点A(x1,y1),点B(x2,y2),y1^2=4x1,y2^2=4x2,故x1*x2=y1^2*y2^2/16OA*OB(向量)=x1*x2+y1*y2又y1^2-y2^2=4(x1-x2),既(y1+y2)(y1-y2)=4(x1-x2),且y1=k(x-4),y2=k(x-4),故y1+y2=k(x1+x2)-8k,y1-y...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点