如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上一点,DE=BC. (1)求证:∠E=∠DBC; (2)判断△ACE的形状(不需要说明理由).
题目
如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上一点,DE=BC.
(1)求证:∠E=∠DBC;
(2)判断△ACE的形状(不需要说明理由).
答案
(1)证明:
证法一:∵AD∥BC,
∴∠BCD=∠EDC,
在△BCD和△EDC中,
,
∴△BCD≌△EDC(SAS)
∴∠E=∠DBC
证法二:∵DE∥BC,DE=BC,
∴四边形BCED是平行四边形,(一组对边平行且相等的四边形是平行四边形)
∴∠E=∠DBC.
(2)△ACE是等腰三角形.
理由为:∵梯形ABCD为等腰梯形,
∴AB=DC,AC=BD,
又∵BC=CB,
∴△ABC≌△DCB,
∴∠ACB=∠DBC,
∵AE∥BC,
∴∠EAC=∠ACB,
∴∠DBC=∠EAC,
又∵∠DBC=∠E,
∴∠EAC=∠E,
∴AC=EC,
∴△ACE是等腰三角形.
(1)根据AD∥BC,得到∠BCD=∠CDE,又DE=BC,所以△BCD≌△EDC,根据全等三角形的对应角相等即可得证.
(2)根据全等三角形对应边相等得到BD=CE,又等腰梯形的对角线相等,所以AC=CE,所以是等腰三角形.
等腰梯形的性质;全等三角形的判定与性质;等腰三角形的判定.
本题主要利用等腰梯形的性质和全等三角形的判定,利用全等三角形的对应角相等是证明两个角相等常用的方法之一,本题利用平行四边形的判定和性质证明更加简单.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- So they __ me open the presents.a.ask b.help c.look d.come they __some present for me a.give b.buy
- 135°的角比平角小_度,比直角大_度,它是一个_角.
- 瓦特是什么物理量的单位?
- It is time for class.shall we (go)into the classroom怎么填
- 精卫传说中誓鸟、冤禽各是什么意思?
- 900千克稻谷可以碾出720千克大米,稻谷的出米率是80%.照这样计算,要碾出100吨大米需稻谷多少吨?
- lucy,we are late for the Party.be q———,please.————里填什么
- 一辆汽车6分之5小时行驶45千米,找这样的速度,从甲地开往乙地用了3小时,求甲乙两地的路程是多少千米
- 英语写信时最后的祝福语都有什么?
- 两个长方形,一个长10cm宽2cm高1.5cm,一个长10cm宽5cm高1.5cm,两个上下拼在一起,体积和表面积各是多少
热门考点