P(x0,y0)(x0≠正负a)是双曲线E:x²/a²-y²/b²=1(a>0,b

P(x0,y0)(x0≠正负a)是双曲线E:x²/a²-y²/b²=1(a>0,b

题目
P(x0,y0)(x0≠正负a)是双曲线E:x²/a²-y²/b²=1(a>0,b
P(x0,y0)(x0≠正负a)是双曲线E:x²/a²-y²/b²=1(a>0,b>0)上一点,M,N分别是双曲线E的左右顶点,直线PM,PN的斜率之积为1/5(1)求双曲线的离心率(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足向量OC=λ向量OA+向量OB,求λ的值
答案
(1)∵P(x0,y0)(x0≠±a)是双曲线E:x^2a^2-y^2b^2=1(a>0,b>0)上一点,
∴ x0^2a^2-y0^2b^2=1,
由题意又有 y0x0-a•y0x0+a=15,
可得a^2=5b^2,c^2=a^2+b^2,
则e= c/a=根号30/5,
(2)联立 {x^2-5y^2=5b^2
y=x-c,
得4x^2-10cx+35b^2=0,
设A(x1,y1),B(x2,y2),
则x1+x2= 5c/2,x1•x2= 35b^2/4,
设 OC→=(x3,y3),OC→=λOA→+OB→,
即 {x3=λx1+x2
y3=λy1+y2
又C为双曲线上一点,即x3^2-5y3^2=5b^2,
有(λx1+x2)^2-5(λy1+y2)^2=5b^2,
化简得:λ^2(x1^2-5y1^2)+(x2^2-5y2^2)+2λ(x1x2-5y1y2)=5b^2,
又A(x1,y1),B(x2,y2)在双曲线上,所以x1^2-5y1^2=5b^2,x2^2-5y2^2=5b^2,
而x1x2-5y1y2=x1x2-5(x1-c)(x2-c)=-4x1x2+5c(x1+x2)-5c^2=10b^2,
得λ2+4λ=0,解得λ=0或-4.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.